If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11+12x+x^2=0
a = 1; b = 12; c = +11;
Δ = b2-4ac
Δ = 122-4·1·11
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-10}{2*1}=\frac{-22}{2} =-11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+10}{2*1}=\frac{-2}{2} =-1 $
| -19c–12=7 | | 8a-(-3-5a)2a= | | 3x+17x-9=5(4x+1) | | 3/5(x+19)=-15 | | 2(x-9)=3(x+5)+5 | | 7.2=x-3.8 | | 8=1/4x+x | | 20x-7=4(5x+6) | | a+3=3a | | B+b+11=46 | | 0.45m-900=90m | | 4x-21=2x-13 | | 1.25t+4=12.5t+13 | | 18=17y-8y | | -5(u–12)=-10 | | 19-{4+8y-3(y+3)}=5(4y-7)-{7(y-1)-18y+26} | | 5/3x+1/3x=35/3+7/3x | | 50-(1+x)=2 | | 2.4+x/8=2.675 | | 20-25+x=54 | | 3050x-14=61(50x+56) | | 5x-18+4x=18 | | 5x+7=(-18) | | -7x-19=23-9x | | x+125=30 | | 19-x/2=-51 | | 3(w+6)=-2(9w-2)9w | | x+32.7=50 | | 19-{4+8y-3(y+3)}=-5(4y-7)-{7(y-1)-18y+26} | | 18-72=18x | | 1.5(x+7)=1.25 | | 5(x-2)+18=4(x=3) |